5.2 Matrix Norms 281

Figure 5.2.1. The induced matrix 2-norm in \Re^3 .

Intuition might suggest that the euclidean vector norm should induce the Frobenius matrix norm (5.2.1), but something surprising happens instead.

Matrix 2-Norm

• The matrix norm induced by the euclidean vector norm is

$$\|\mathbf{A}\|_{2} = \max_{\|\mathbf{x}\|_{2}=1} \|\mathbf{A}\mathbf{x}\|_{2} = \sqrt{\lambda_{\text{max}}}, \tag{5.2.7}$$

where λ_{max} is the largest number λ such that $\mathbf{A}^*\mathbf{A} - \lambda \mathbf{I}$ is singular.

• When **A** is nonsingular,

$$\|\mathbf{A}^{-1}\|_{2} = \frac{1}{\min\limits_{\|x\|_{2}=1} \|\mathbf{A}\mathbf{x}\|_{2}} = \frac{1}{\sqrt{\lambda_{\min}}},$$
 (5.2.8)

where λ_{\min} is the smallest number λ such that $\mathbf{A}^*\mathbf{A} - \lambda \mathbf{I}$ is singular.

Note: If you are already familiar with eigenvalues, these say that λ_{max} and λ_{min} are the largest and smallest eigenvalues of $\mathbf{A}^*\mathbf{A}$ (Example 7.5.1, p. 549), while $(\lambda_{\text{max}})^{1/2} = \sigma_1$ and $(\lambda_{\text{min}})^{1/2} = \sigma_n$ are the largest and smallest singular values of \mathbf{A} (p. 414).

Proof. To prove (5.2.7), assume that $\mathbf{A}_{m \times n}$ is real (a proof for complex matrices is given in Example 7.5.1 on p. 549). The strategy is to evaluate $\|\mathbf{A}\|_2^2$ by solving the problem

maximize
$$f(\mathbf{x}) = \|\mathbf{A}\mathbf{x}\|_2^2 = \mathbf{x}^T\mathbf{A}^T\mathbf{A}\mathbf{x}$$
 subject to $g(\mathbf{x}) = \mathbf{x}^T\mathbf{x} = 1$